# Utilizing Graph Neural Networks for Robust DDoS Attack Detection in Network Security

#### Kartikeya Sharma

Senior Associate Information Security Engineer at Equinix



Graph Neural Networks are powerful Al tools that learn from connected data, helping us uncover hidden patterns in complex networks.

Nodes (also known as vertices) represent entities or objects in a graph.

<u>Edges</u> represent the relationships or connections between nodes.

## GNNs learn rich node representations, called <u>embeddings</u> using <u>Message</u> <u>Passing</u>

GNNs have found applications in various domains, including:

- Social network analysis
- Molecular property prediction
- □ Knowledge graph completion
- Recommender systems

### GNNs vs Traditional Neural Networks

| Aspect                    | Graph Neural Networks                                           | Traditional Neural Networks                                             |
|---------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|
| Input Structure           | Graphs with variable size and<br>connectivity                   | Fixed-size, grid-like input (e.g.,<br>images, sequences)                |
| Relationships             | Models and learns from relationships between entities           | Assumes independence between<br>input features                          |
| Node-level Tasks          | Node classification, node regression, node clustering           | Not applicable                                                          |
| Edge-level Tasks          | Link prediction, edge classification                            | Not applicable                                                          |
| Graph-level Tasks         | Graph classification, graph regression                          | Sample-level classification, regression                                 |
| Permutation<br>Invariance | Inherently permutation-invariant due to message passing         | Requires explicit techniques (e.g., pooling) for permutation invariance |
| Interpretability          | Can provide insights into important nodes, edges, and subgraphs | Often difficult to interpret learned features                           |

### Milestones in GNN Evolution



### Milestones in GNN Evolution



### Milestones in GNN Evolution



What is a DDoS Attack?

A Distributed Denial of Service (DDoS) attack involves overwhelming a target—such as a server, website, or network—with a flood of internet traffic. What is a DDoS Attack?

DDoS attacks can be categorized into three main types:

- Volume-based Attacks
- Protocol Attacks
- Application Layer Attacks

Traditional Approaches for DDoS Detection

**G**Filtering techniques

□ block traffic based on IP addresses, ports

#### □ Statistical analysis

- detect anomalies in traffic patterns, e.g. entropy, diversity
- Machine learning

k-Nearest Neighbors, Hidden Markov Models, Neural Networks Traditional Approaches for DDoS Detection

Advantages of using traditional approaches:

Simplicity and Low computational overhead
Effectiveness against known attacks
Interpretability

Traditional Approaches for DDoS Detection

Disadvantages of using traditional approaches:

Limited adaptability
Inability to model complex relationships
High false positive rates
Difficulty detecting low-volume attacks

The GNN Approach

Represents the network as a graph Node features □ IP address, port, and traffic statistics **Edge** features Bandwidth and latency Learn node and edge embeddings and detect malicious activity by classifying nodes or entire graphs.

The GNN Approach

Advantages of using GNN approach:

Automated feature learning
Modeling complex relationships
Generalization to unseen data

The GNN Approach

Disadvantages of using GNN approach:

Computational complexity
Interpretability challenges

Using Packets as nodes

How is the network modeled?

Packets are grouped by source and destination IP.
Packets are sorted by timestamp in ascending order.
Node Creation: Packets become nodes.
Limited by pre-defined max number
Features: protocol type (e.g., TCP, UDP)
Edge Types:
Between consecutive packets (same direction)
Between last packet of one direction and first of opposite

# Using Packets as nodes



The endpoint traffic graph

# Using Packets as nodes



### Using Packets as nodes

#### **RESULTS**

| Datasets    | Accuracy | Precision | Recall | F1     |
|-------------|----------|-----------|--------|--------|
| CIC-IDS2017 | 0.9959   | 0.9965    | 0.9953 | 0.9959 |
| CIC-DOS2017 | 0.9751   | 0.9505    | 0.9407 | 0.9456 |

#### Using Traffic Flows as nodes

How is the network modeled?

□Node Creation:

Host nodes: Represent source and destination lps

□ Flow nodes: Represent individual network flows

Features:

□ Flow nodes: 80 features from the dataset (e.g., packet size, duration)

□ Host nodes: Initialized with all ones

Edge Types:

□Source-to-flow edges: Connect source host to flow

Generation Flow-to-destination edges: Connect flow to destination host

# Using Traffic Flows as nodes



## Using Traffic Flows as nodes



# Using Traffic Flows as nodes

#### RESULTS

| Datasets    | DoS GoldenEye | DosHulk | DoS slowloris | DoS<br>Slowhttptest | DDoS |
|-------------|---------------|---------|---------------|---------------------|------|
| CIC-IDS2017 | 0.9959        | 0.9965  | 0.9953        | 0.9959              | 0.99 |

Accuracy over different attack classes

#### References

[1] Li, Yuzhen, et al. "Graphddos: Effective ddos attack detection using graph neural networks." 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE, 2022.

[2] Pujol-Perich, David, et al. "Unveiling the potential of graph neural networks for robust intrusion detection." ACM SIGMETRICS Performance Evaluation Review 49.4 (2022): 111-117.

### Thank You